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We show how the variational formulation introduced by Doering & Constantin to rig-
orously bound the long-time-averaged total dissipation rateD in turbulent shear flows
can be extended to treat other long-time-averaged functionals lim supT→∞(1/T ) ×∫ T

0
f(D,Dm, Dv) dt of the total dissipation D, dissipation in the mean field Dm and

dissipation in the fluctuation field Dv . Attention is focused upon the suite of func-
tionals f = D(Dv/Dm)n and f = Dm(Dv/Dm)n (n > 0) which include the ‘efficiency’
functional f = D(Dv/Dm) (Malkus & Smith 1989; Smith 1991) and the dissipation in
the mean flow f = Dm (Malkus 1996) as special cases. Complementary lower estimates
of the rigorous bounds are produced by generalizing Busse’s multiple-boundary-layer
trial function technique to the appropriate Howard–Busse variational problems built
upon the usual assumption of statistical stationarity and constraints of total power
balance, mean momentum balance, incompressibility and boundary conditions. The
velocity field that optimizes the ‘efficiency’ functional is found not to capture the
asymptotic structure of the observed mean flow in either plane Couette flow or
plane Poiseuille flow. However, there is evidence to suppose that it is ‘close’ to a
neighbouring functional that may.

1. Introduction
In the continued absence of any predictive theory, firm theoretical results in fluid

turbulence remain a rarity. Those that do exist for inhomogeneous, anisotropic
turbulence are invariably the product of variational methods which seek to find
rigorous upper limits for certain global flow quantities. Although this approach
dates back to the fifties (Malkus 1954, 1956), it has matured only recently with
the emergence of a new variational technique discovered by Doering & Constantin
(1992, 1994, 1996; Constantin & Doering 1995; Nicodemus, Grossmann & Holthaus
1997a, b). This new ‘background’ method, which is now known to be complementary
to the classical Euler–Lagrange approach pioneered by Howard (1963, 1972, 1990)
and Busse (1969a, b, 1970, 1978) (see Kerswell 1997, 1998, 2001), has not only provided
new rigorous bounds (e.g. Nicodemus, Grossmann & Holthaus 1998a, b; Constantin
& Doering 1999; Doering & Constantin 2001; Kerswell 2001; Plasting & Kerswell
2002) but helped put old upper bound estimates (Busse 1969a, 1970) on a firm footing.

The emphasis in all this work has almost exclusively been upon bounding the global
transport quantity of the turbulent flow which, under statistically steady conditions
or long time averaging, is equivalent to bounding the energy dissipation rate. In
planar Boussinesq convection, the global transport quantity is the heat flux across



240 R. R. Kerswell

the layer (Howard 1963, 1990; Busse 1969a; Chan 1971, 1974; Doering & Constantin
1996; Constantin & Doering 1999; Constantin, Hallstrom & Putkaradze 1999, 2001;
Vitanov 1998, 2000b, c, d ; Vitanov & Busse 1997, 2000; Kerswell 2001; Ierley &
Worthing 2001a). In plane Poiseuille flow, it is the mass flux between the boundaries
at constant external pressure gradient (Busse 1969b, 1970; Constantin & Doering
1995) and in plane Couette flow, it is the momentum transport perpendicular to
the boundaries (Busse 1969b, 1970; Doering & Constantin 1992, 1994; Gebhardt et
al. 1995; Nicodemus et al. 1997a, b, 1998a, b; Plasting & Kerswell 2002). Bounds on
energy dissipation rates have also been derived in many other flow situations (e.g.
general boundary-driven flows: Wang 1997, Taylor–Couette flow: Nickerson 1969;
Busse 1972, plane Couette flow with suction: Doering, Spiegel & Worthing 2000, a
precessing spheroid: Kerswell 1996, convection through a porous medium: Busse &
Joseph 1972; Gupta & Joseph 1973; Doering & Constantin 1998; Vitanov 2000a , and
forced periodic flow: Childress, Kerswell & Gilbert 2001; Doering & Foias 2001).
Only recently has attention broadened to consider other functionals (Caulfield &
Kerswell 2001; Childress et al. 2001).

The original reason for this focus was the physical hypothesis by Malkus (1954,
1956) that fluid flows become turbulent to maximize the approximate transport
functional for the external forcing. In other words, Malkus proposed a sort of ‘action’
principle for turbulence in which the action was the negative of the global transport
quantity so that minimizing the action corresponded to maximizing the transport. This
motivated the original work by Howard and then Busse directed at seeing whether
the optimal fields which emerged from suitably constrained optimization problems
would bear any relation to the average features of realized turbulent flows. For shear
flows, the results were encouraging as the optimizing solution contained a hierachy
of realistic boundary scales, but the scaling of the dissipation bound and the internal
velocity profile were not consistent with observations. For example in plane Couette
flow, Busse’s (1970) optimal asymptotic solution produced a maximal dissipation rate
independent of the fluid viscosity as Re → ∞ whereas experimental data suggest a
drop off with 1/(logRe)2. Furthermore, Busse’s optimal asymptotic solution possessed
a shear equal to one quarter of the laminar shear across the interior – Busse’s famous
1
4
-law (now known to be a true feature of the optimization problem rather than

an artifact of Busse’s multiple-boundary-layer technique (Kerswell 1998)) – whereas
it is generally presumed that the internal shear will vanish in the limit Re → ∞.
Despite these issues, the formal problem of improving Busse’s (1970) thirty year old
bound through either reducing the numerical coefficient or more significantly in an
improved scaling continues to attract attention since it represents a well-defined route
by which theoretical analysis can strive to make contact with experimental turbulence
data (Busse 1978; Kerswell & Soward 1996; Nicodemus, Grossmann & Holthaus
1999; Kerswell 2000; Wang 2000; Plasting & Kerswell 2002). The path forward is
clearly through incorporating further dynamical information from the Navier–Stokes
equations to produce more tightly constrained variational problems. In contrast, the
emphasis in the search for the ‘action’ functional (assuming of course that it exists)
is to examine the optimal field which emerges from loosely constrained variational
problems. This is because any functional will presumably start to produce realistic
optimal fields if their variational problem is constrained tightly enough. Furthermore,
from a practical perspective, the ‘action’ principle will only be useful in predicting
mean turbulent statistics if its variational origins are sufficiently transparent.

Malkus & Smith (1989, hereafter referred to as MS) extended the search for an
action principle to other candidate functionals beyond global transport in the context
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of plane Poiseuille flow. They developed a streamlined but rather ad-hoc variational
formulation in order to survey a whole suite of different functionals based upon the
statistically averaged total dissipation rateD and the ratio, I = Dv/Dm, of statistically
averaged dissipation in the fluctuation field Dv to dissipation in the mean flow Dm.
(The motivation to consider the quantity I seems to have come from a study by Ierley
& Malkus (1988) which found that I appears to be stationary for realized flows within
the context of the Reynolds & Tiederman (1967) parametrization of available data.)
Within their suite of functionals f = DIn, they discovered one functional, E := DI,
subsequently christened the ‘efficiency’ functional, which appeared to reproduce in
its optimal velocity field key features of the realized turbulent mean flow. Figures 9
and 10 of MS clearly show that the optimal solution has a well-defined logarithmic
sublayer close to the wall and a rapidly converging velocity defect law. The most
intriguing of their figures, however, is figure 12 which shows their optimal ‘prediction’
closely shadowing experimental data.

Encouraging as these results are, they can only be viewed as highly suggestive
since the variational problems solved in MS involve heuristic assumptions which
cannot be traced back to the Navier–Stokes equations. Motivated by a need to
achieve numerical solutions, their approach was to formulate a simplified variational
problem based entirely upon the mean flow profile U(z). This made it impossible
to formally incorporate the total power balance or the mean momentum balance
into their problem. Apart from expressing the efficiency functional solely in terms of
U and its derivatives, the mean momentum balance was only used to generate an
extended set of boundary conditions on U(z) and the power balance (or dissipation
rate integral as MS refer to it) to determine a minimum lengthscale in U(z). The latter
feature is fundamental to the MS approach since this is seen to viscously set the size
of the innermost boundary whereas the rest of the flow domain is left free to reach
an optimum amplitude inviscidly. All that is required of the inviscid interior is that
it be inviscidly stable, which is minimally that U ′′(z) remains one-signed (Rayleigh’s
criterion). MS argue plausibly that results from their variational problem should
conservatively bound those from the formal problem but the relationship of their
optimal fields to the formal optimal fields is tantalizingly unclear.

Further efforts to test the ability of the efficiency functional in plane Couette flow
(Smith 1991) and Hagen–Poiseuille flow (Worthing 1990; Ierley & Worthing 2001b)
have been mildly corroborative but have also tended to produce more questions than
answers. Since most of these questions have revolved around how the smallest scale
is chosen and the imposition of the inviscid stability condition in the interior, an
examination of how the efficiency functional performs under the full set of formal
constraints used by Busse (1970) seems called for. This is the underlying motivation
for this paper. To achieve this objective, both the Doering–Constantin background
method and Busse’s multiple-boundary-layer technique have had to be applied to
functionals beyond the energy dissipation rate. Showing how this can be done is
the main purpose of this paper. Other work by Malkus (1996) developing ideas of
statistical stability in turbulent flows has also drawn attention to the dissipation rate
Dm associated with the mean flow. Formal bounds on this and the dissipation Dv
associated with the fluctuation field are also found as part of this investigation.

The plan of the paper is as follows. In § 2, we introduce the canonical shear
problems of plane Couette flow (PCF) and plane Poiseuille flow (PPF) which will
provide the context for the ensuing variational analysis. In § 3 and Appendix A we
show how Busse’s multiple-boundary-layer technique may be used to produce under-
estimates of the upper bounds on the functionals f = DIn and f = DmIn for n > 0
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using the standard dynamical constraints of total power and mean momentum bal-
ance, incompressibility and the boundary conditions. In § 4 we derive complementary
overestimates of these bounds using the Doering–Constantin background approach.
The closeness of the two estimates that emerge and the fact that they must bracket
the true bound (see Appendix D) means that the true asymptotic behaviour of the
bound and its optimizing solution is captured for all functionals considered here.
Beyond the bounding results themselves, the emphasis throughout is to compare the
optimal solutions that emerge with observed turbulent flows. Key features used are
the structure of the interior mean profile, and the predicted scalings for I, and the
total, mean and fluctuation dissipations. The standard Prandtl–von Kármán mixing
length closure, which currently appears consistent with all turbulence data, predicts
that I = O(logRe), D = Dv = O(Re3/(logRe)2) and Dm = O(Re3/(logRe)3) (in
viscous units) for asymptotically large Re. Conclusions are drawn in a final discussion
section.

The notation used for the dissipation is as follows:

D = 〈|∇u|2〉, the total dissipation at time t (per unit mass),

Dm = 〈ū′2〉, the dissipation rate associated with the mean flow at time t,

Dv = 〈|∇(u− ū)|2〉, the dissipation rate associated with the velocity fluctuations,

D = the long time average or the statistical average of D,

Dm = the long time average or the statistical average of Dm,

Dv = the long time average or statistical average of Dv,

Dlam = the laminar (steady) total dissipation rate (DPCF
lam for PCF andDPPF

lam for PPF),

Dmax = the smallest current overestimate of the upper bound on D produced

by the Doering–Constantin approach,

Dmax = the largest current underestimate of the upper bound on D produced

using Busse’s multiple boundary layer ansatz,

Dmax = the true upper bound on the total energy dissipation subject to the con-

straints of total power balance, mean momentum balance, incompressibility

and the boundary conditions.

(I, I) = (Dv/Dm, Dv/Dm) respectively.

2. Formulation
2.1. Plane Couette flow

The canonical example of boundary-driven flow is plane Couette flow in which a
fluid is sandwiched between two parallel infinite plates at z = ± 1

2
d which are being

moved at constant velocities ∓ 1
2
V0x̂ respectively. Non-dimensionalizing the system by

measuring distances in units of d and velocities in viscous units of ν/d (following
Busse’s original work in 1970), the equations read

∂u

∂t
+ u · ∇u+ ∇p = ∇2u (2.1)

with

∇ · u = 0, u(x, y,± 1
2
) = ∓ 1

2
Re, (2.2)



Upper bounds on dissipation functionals 243

where Re := V0d/ν. In the case of a statistically stationary turbulent flow, we adopt the
Reynolds mean–fluctuation decomposition of the velocity field, u(x, t) = U(z)x̂+v(x, t),
with v̄ = 0 where the horizontal and bulk averaging procedures are defined as

f̄ := lim
Lx,Ly→∞

1

4LxLy

∫ Lx

−Lx

∫ Ly

−Ly
f dx dy, 〈f〉 :=

∫ 1/2

−1/2

f̄ dz. (2.3)

The mean momentum balance is obtained via (2.1) · x̂ as

U ′ = uw − 〈uw〉 − Re. (2.4)

The total power balance is obtained by taking 〈u · (2.1)〉 and dropping the kinetic
energy derivative term by appeal to statistical stationarity. To reflect this, we write
the power balance as

Dm +Dv = D, (2.5)

where new symbols are used for each dissipation to reflect that it is a statistically
averaged value. Their definitions are the same as the time-dependent functionals Dm,
Dv and D except that the fluctuation velocity field is an ‘average’ field in some vague
sense. Specifically, the statistically averaged dissipation in the fluctuation field is

Dv := 〈|∇v|2〉, (2.6)

the statistically-averaged dissipation in the mean field is

Dm := 〈U ′2〉 = 〈(uw − 〈uw〉)2〉+ Re2 (2.7)

and the statistically averaged total dissipation (per unit mass) is

D := 〈|∇u|2〉 = Re2 + Re〈uw〉, (2.8)

all in units of ν3/d4. The first term on the right-hand side of (2.8) represents the
laminar dissipation, DPCF

lam := Re2, produced by the basic state u = Ulamx̂ = −Re zx̂.
The second term therefore indicates the enhancement in dissipation due to turbulence
and is known to dominate DPCF

lam as Re→∞. The total power balance is then

Re〈uw〉 = 〈|∇v|2〉+ 〈(uw − 〈uw〉)2〉. (2.9)

2.2. Plane Poiseuille flow

The plane Poiseuille set-up we consider consists of two parallel infinite plates at
z = ± 1

2
d between which fluid is driven by an applied pressure gradient of ρν2A/d3 in

the x̂-direction. Non-dimensionalizing velocities by ν/d and distances by d gives

∂u

∂t
+ u · ∇u+ ∇p = Ax̂+ ∇2u (2.10)

with the non-slip condition that u = 0 on the plates. Adopting the Reynolds mean–
fluctuation decomposition as before, then (2.10) · x̂ gives

U ′ = uw − 〈uw〉 − A√
12
h(z), (2.11)

where h(z) :=
√

12z so that 〈h2〉 = 1. Experimentally, the mean flow profile U is
always found to be symmetric about the mid-plane. From (2.11), this implies that
〈uw〉 = 0 so this is assumed henceforth. The conventional Reynolds number is
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Re = 3
2
d[〈U〉ν/d]/ν which simplifies to

Re = 3
2
〈U〉 = 3

2
〈−zU ′〉 = 1

8
A− 1

4

√
3〈huw〉 (2.12)

and allows the mean momentum balance to be rewritten as

U ′ = uw − h〈huw〉 − 4
3

√
3Re h. (2.13)

The statistically averaged total power balance is obtained by taking 〈u · (2.10)〉 and
leads to

Dm +Dv = D, (2.14)

where the statistically averaged dissipation in the fluctuation field is

Dv := 〈|∇v|2〉, (2.15)

the statistically averaged dissipation in the mean field is

Dm := 〈U ′2〉 = 〈(uw − h〈huw〉)2〉+ 16
3
Re2, (2.16)

and the statistically averaged total dissipation (all per unit mass) is

D := 〈|∇u|2〉 = A〈U〉 = 16
3
Re2 + 4

3

√
3Re〈huw〉, (2.17)

all in units of ν3/d4. The first term on the right-hand side of (2.17) represents the
laminar dissipation, DPPF

lam := 16Re2/3, produced by the basic state u = Ulamx̂ =
1
8
A(1−4z2)x̂. The second term therefore indicates the enhancement in dissipation due

to turbulence and is known to dominate DPPF
lam as Re → ∞. The total power balance

is then
4
3

√
3Re〈huw〉 = 〈|∇v|2〉+ 〈(uw − h〈huw〉)2〉. (2.18)

3. Underestimating upper bounds
The variational problem of maximizing a general function of the dissipations,

f(D,Dm,Dv), in plane Couette flow (PCF) and plane Poiseuille flow (PPF) may
conveniently be discussed together using the generalized definitions

U ′ := uw − h〈huw〉 − h√Dlam,
Dm := Dlam + 〈(uw − h〈huw〉)2〉,
D := Dlam +

√
Dlam〈huw〉,

and taking (Dlam = DPCF
lam = Re2, h(z) = h0 = h1 = 1) for PCF and (Dlam = DPPF

lam =

16Re2/3, h(z) =
√

12z, h0 =
√

3, h1 = 1
2
) for PPF. The appropriate Lagrangian for

maximizing f(D,Dm,Dv) over all incompressible flow fields v which satisfy the global
power balance, mean momentum balance and boundary conditions is

L := f(D,Dm,Dv) + Λ(Dm +Dv −D)− 〈P∇ · v〉 (3.1)

(the mean momentum balance is incorporated implicitly by eliminating the mean
field). This leads to the Euler–Lagrange equation

[α(uw − h〈huw〉)− γh]
 w

0
u

+ ∇p− ∇2v = 0 (3.2)
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with

∇ · v = 0, v(x, y,± 1
2
) = 0, (3.3)

where

α :=
Λ+ fDm

Λ+ fDv

, γ := 1
2

√
Dlam

Λ− fD
Λ+ fDv

, (3.4)

and, for example, fD = ∂f/∂D, p = 1
2
P/(Λ+ fDv

). The Lagrange multiplier Λ takes
the value

Λ = − (D− Dlam)fD + 2(Dm − Dlam)fDm
+DvfDv

Dm − Dlam (3.5)

to ensure that 〈v · δL/δv〉 = 0. The fact that γ invariably becomes large as Re→ ∞
for functions f of interest means that an asymptotic solution can be found using a
multiple-boundary-layer technique pioneered by Busse (1969, 1970). This is developed
in Appendix A for general f and used below to derive asymptotic underestimates
for upper bounds on the two families of functions f = D(Dv/Dm)n and f =
Dm(Dv/Dm)n.

3.1. f = DIn

Originally Busse found his best variational underestimate for the upper bound prob-
lem with f = D by taking a distinquished limit Re → ∞ with N = N(Re). Un-
fortunately, under this limiting procedure, his multi-boundary-layer solution is not
strictly asymptotic since the boundary layers do not formally separate. However, the
limiting sequence limN→∞ limRe→∞ is valid and provides identical results. Hereafter,
to avoid unnecessary complication, we apply this latter procedure implicitly. Hence,
for f = D(Dv/Dm)n, the equations to be solved at asymptotically large Re are (see
Appendix A)

α = α̂µa =

1 +
Dlam

D

(
n
D

Dm

− 1

)
(

1− n− nDm

Dv

)
+
Dlam

D

(
2n
D

Dm

+ n
D

Dv

− 1

) , (3.6)

4Nb2
1 =

(
σ

β

)3/4

h
1/2
0 α̂1/2

[
44/3β

h1

]
, rN = 1

2
(1 + a), (3.7)

Dv = 2µ2+a−rN h0h14
Nb2

1, Dm = Dlam + 2µ2−rN h0h14
Nb2

1/α̂, (3.8)√
Dlam = 2µ1−rN h0h14

Nb2
1

(
µaα̂+ 1

α̂

)
. (3.9)

For PCF, the asymptotic interior mean shear is given by (see (A 63))

U ′ = −Re
2

(n+ 1)DDm −D2
m

DDm + Dlam(nD−Dm)
. (3.10)

For PPF, the mean velocity change across the interior is

∆U0 =
Re

2

(n+ 1)DDm −D2
m

DDm + Dlam(nD−Dm)
(3.11)

so that the interior mean parabolic profile is

U = 2
3
Re+ 1

3
∆U0 − 4∆U0z

2. (3.12)

We now consider the various scenarios as n varies.
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Case 0 6 n < 1

By inspection, the variational solution has Dm = O(Dv) so a = 0 and α̂ =
(1 + n)/(1− n) which means that

fbound > 2µ3/2h0h14
Nb2

1α̂
n−1(α̂+ 1). (3.13)

Using (3.7) to eliminate b1 and (3.9) to eliminate µ in favour of Re, the lower-bound
expression for fbound becomes

fbound > (1 + n)1+n(1− n)1−nDmax, (3.14)

where

Dmax :=
D

3/2
lam

(4h0h1)2

[(
σ

β

)3/4

h
1/2
0

(
44/3β

h1

)]−2

(3.15)

is the upper bound calculated originally by Busse (1970) for the total dissipation
(recovered in the special case n = 0). Numerically (β ≈ 0.624 and σ ≈ 0.337), Busse’s
(1970) upper bound underestimate on the total dissipation is Dmax := 0.01Re3 for
PCF and Dmax := 64

27
× 0.01Re3 for PPF. For PCF, the asymptotic interior mean shear

for the optimal solution is

U ′ = −
(

3n+ 1

4

)
Re, (3.16)

whereas for PPF, the asymptotic mean parabolic profile is

U = Re

[
3 + n

4
− (1 + 3n)z2

]
. (3.17)

The optimal solution has

[D,Dm,Dv] = 1
2
(1− n2)Dmax[2, (1− n), (1 + n)], I =

1 + n

1− n . (3.18)

Case n = 1: the efficiency functional

For n = 1 the solution has Dlam �Dm = o(Dv), a = 1/5 and α̂2 = (2h0h14
Nb2

1)
−1 so

fbound > 4Dmax (3.19)

and

D = Dv = 24/3D
1/3
lamD

2/3
max ∼ O(Re8/3), Dm = 22/3D

2/3
lamD

1/3
max ∼ O(Re7/3), (3.20)

I = 22/3D
−1/3
lam D1/3

max ∼ O(Re1/3). (3.21)

The asymptotic interior mean profiles for the optimal solution in both PCF and PPF
are just the laminar profiles, U ′ = −Re and U = Re(1− 4z2) respectively.

Case n > 1

In this case, a > 0 implying Dm ≈ 2n/(n− 1)Dlam = o(Dv) and α is then determined
by the second expression of (3.8). For consistency, a = 1/3 and α̂ = (n − 1)/(n +
1)(2h0h14

Nb2
1)
−1, which leads to

fbound > 2
(n− 1)(n−1)/2(n+ 1)(n+1)/2

nn
D

(n+1)/2
max

D
(n−1)/2
lam

∼ O(Re(n+5)/2) (3.22)
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and

D = Dv = 2
(n+ 1)1/2

(n− 1)1/2
D1/2
maxD

1/2
lam ∼ O(Re5/2), I =

(n2 − 1)1/2

n

D
1/2
max

D
1/2
lam

∼ O(Re1/2).

(3.23)

Again, the asymptotic interior mean profiles for the optimal solution in both PCF
and PPF are just the laminar profiles, U ′ = −Re and U = Re(1− 4z2) respectively.

3.2. f = DmIn

As before, we look for optimal asymptotic solutions valid as Re → ∞. Of the
expressions (3.6)–(3.9), only that for α needs changing to

α = α̂µa =
Dm + (n− 1)Dlam

2(Dm − Dlam)(1− n) + (Dv −Dm + Dlam)n(Dm/Dv)
. (3.24)

For PCF, the new expression for the asymptotic interior mean shear is now

U ′ = −Re
2

nDm

Dm + (n− 1)Dlam
, (3.25)

and for PPF, the asymptotic mean parabolic profile is

U = Re

[
4(n− 1)Dlam + (n+ 4)Dm − 12nDmz

2

6((n− 1)Dlam +Dm)

]
. (3.26)

Case 0 6 n < 2

For 0 6 n < 2 the solution hasDm = O(Dv)� Dlam so a = 0 and α̂ = (1+n)/(2−n)
which leads to

fbound >
4(1 + n)1+n(2− n)2−n

27
Dmax, (3.27)

and

[D,Dm,Dv] = 4
27

(1 + n)(2− n)Dmax[3, (2− n), (1 + n)], I =
1 + n

2− n . (3.28)

Special cases are f = Dm (n = 0) and f = Dv (n = 1) where in both cases

fbound >
16
27
Dmax. (3.29)

The asymptotic mean interior shear for PCF is

U ′ = − 1
2
nRe (3.30)

and the interior parabolic profile

U = Re

[
n+ 4

6
− 2nz2

]
. (3.31)

Case n > 2

For n > 2 we can exploit the simple relationship

DIn = DmI
n +DmI

n+1 (3.32)

to immediately deduce the asymptotic bound for f = DmIn. This is possible because
the bound for f = DIn with n > 1 is estimated above by a variational solution with
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I→∞ as Re→∞. This implies that the asymptotic maximal values of f = DIn and
DmIn+1 coincide. Hence for n > 2

fbound > 2
(n− 2)(n−2)/2nn/2

(n− 1)n−1

D
n/2
max

D
(n/2)−1
lam

∼ O(Re2+(n/2)). (3.33)

4. Overestimating upper bounds
Here we show how the ‘background’ technique introduced by Doering & Constantin

(1992, 1994, 1995, 1996) and subsequently improved by Nicodemus et al. (1997a, b)
can be used to produce upper bounds on long time averages of certain classes of
dissipation functionals f(D,Dm, Dv). For practical purposes, the real quantity of interest

is an upper bound on f(D,Dm,Dv) rather than lim supT→∞(1/T )
∫ T

0
f(D,Dm, Dv) dt

however, only the latter can be bounded by the background technique. Since it is
supu f(D,Dm, Dv), where

sup
u
f(D,Dm, Dv) > lim sup

T→∞
1

T

∫ T

0

f(D,Dm, Dv) dt, (4.1)

that is actually bounded, if we are to find anything about f(D,Dm,Dv) then we are
forced to assume

sup
u
f(D,Dm, Dv) > f(D,Dm,Dv). (4.2)

In this section we secure an upper bound on supu f(D,Dm, Dv) using the same dy-
namical constraints as before, that is, the total power balance, the mean momentum
balance, flow incompressibility and boundary conditions. As in Doering & Con-
stantin’s original work, we adopt Hopf’s (1941) idea of a degenerate or non-unique
representation of the velocity field, u = φ(z)x̂ + ν(x, t), where crucially ν̄ 6= 0 is
permitted. In fact we expect only a mean flow in the x̂- or 1-direction so we write
u = (φ+ ν̄1)x̂+ ν̂ where ¯̂ν = 0. The respective dissipation definitions then become

D = 〈|∇(φx̂+ ν)|2〉, Dm = 〈|φ′ + ν̄ ′1|2〉, Dv = 〈|∇ν̂|2〉.
The key step in estimating the maximum of f(D,Dm, Dv) from above is knowing how
to construct a Lagrangian that incorporates the dynamical information from the
Navier–Stokes equations in the appropriate fashion. This cannot be algorithmically
done as will be seen later. However, for the specific family of functions f = Dg(I),
the construction

L := f(D − a〈ν · (NS)〉, Dm, Dv)=f

(
D − a〈u · (NS)〉+a

∫ 1/2

−1/2

φ(NS)1 dz, Dm, Dv

)
(4.3)

works where (NS) indicates the steady Navier–Stokes equation. Again formally, the
a〈ν · (NS)〉 term should include the unsteady Navier–Stokes equations and be long
time averaged. However, it is easy to show that the velocity time-derivative term
vanishes under this process (Doering & Constantin 1992) and then the long time
average can be dropped. Since fD 6= 0, the scalar a and function φ(z) act as Lagrange
multipliers to impose the dynamical constraints of total power balance,

δL
δa

∣∣∣
u,φ

= 〈u · (NS)〉fD = 0, (4.4)
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and the mean momentum balance in the x̂-direction,

δL
δφ

∣∣∣
u,a

= a(NS)1fD = 0, (4.5)

respectively. Eliminating u from L gives

L = f(〈φ′2〉 − 〈(a− 1)|∇ν|2 + aφ′ν1ν3 − (a− 2)φ′′ν̄1〉, 〈|φ′ + ν̄ ′1|2〉, 〈|∇ν̂|2〉). (4.6)

At this point, for an upper bound on f to be available, we must be able to establish
that L has a global maximum over ν for some given φ and a. Sufficient conditions
for this are, for example, that fD > 0 and f becomes negative if D → −∞. Given this,
the background field φ must then satisfy a spectral constraint that

(a− 1)〈|∇ν̂|2〉+ a〈φ′ν̂1ν̂3〉 > 0 ∀ ν̂ with ∇ · ν̂ = 0 and ν̂(x, y,± 1
2
) = 0. (4.7)

We now develop the analysis for the two particular classes of functionals f = Dg(I)
and f = Dmg(I).

4.1. f = Dg(I)

We start with the case of PCF. Rather than working with the Lagrangian

L := 〈φ′2 − {(a− 1)|∇ν̂|2 + (a− 1)ν̄ ′21 + aφ′ν̂1ν̂3 − (a− 2)φ′′ν̄1}〉g(I), (4.8)

where

I :=
Dv

Dm
=

〈|∇ν̂|2〉
〈(φ′ + ν̄ ′1)2〉 , (4.9)

it proves easier to deal with

L 6L1 := 〈φ′2 − {(a− c− 1)|∇ν̂|2 + (a− 1)ν̄ ′21 − (a− 2)φ′′ν̄1}〉g(I) (4.10)

which bounds L provided the background field satisfies the spectral constraint that

c〈|∇ν̂|2〉+ a〈φ′ν̂1ν̂3〉 > 0 ∀ ν̂ with ∇ · ν̂ = 0 and ν̂(x, y,± 1
2
) = 0. (4.11)

The Doering–Constantin approach is to optimizeL1 over ν̂ and ν̄1 for given φ, a and
c. The inner product of the optimal ν̂ with its corresponding (vanishing) variational
derivative, 〈ν̂ · δL1/δν̂〉 = 0, gives the relation

〈φ′2 − (a− 1)ν̄ ′21 + (a− 2)φ′′ν̄1〉 = (a− c− 1)

[
g

g′
Dm + Dv

]
. (4.12)

Optimization over ν̄1 gives

δL1

δν̄1

= 0⇒ 2[(a−1)Dm+(a−c−1)Dv]ν̄
′′
1 = −[(a−2)Dm+2(a−c−1)Dv]φ

′′. (4.13)

This integrates to

U ′ := (φ′ + ν̄ ′1) =
a

2[(a− 1) + (a− c− 1)I]
(φ′ −U ′lam) +U ′lam, (4.14)

where Ulam := −Re z. Substituting this back into the definition of Dm and (4.12) leads
to the consistency relations

Dm − Dlam =
a2

4[(a− 1) + (a− c− 1)I]2
‖φ′ −U ′lam‖2

2, (4.15)
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(a− c− 1)Dm

[
g

g′
+ I

]
+ (a− 1)Dm − aDlam =

a2

2[(a− 1) + (a− c− 1)I]
‖φ′ −U ′lam‖2

2

(4.16)

for Dm and I = Dv/Dm. The problem is to minimize

f 6 fbound := Dg(I) = (a− c− 1)
g2

g′
Dm (4.17)

over c > 0, a > 1 + c and φ which satisfy the spectral constraint (4.11) with Dm
and I defined implicitly by (4.15) and (4.16). The associated asymptotic interior mean
profile is then given by (4.14).

For PPF, the definition of L1 is modified slightly to

L1 := 〈φ′2−{(a−c−1)|∇ν̂|2 +(a−1)ν̄ ′21 −(a−2)φ′′ν̄1−µν̄1}+λ( 2
3
Re−φ)〉g(I) (4.18)

to reflect the fact that now 〈φ〉 = 2
3
Re and 〈ν̄1〉 = 0 (see Appendix C for a detailed

explanation). The analysis proceeds as in PCF except that the additional equations
δL1/δµ = δL1/δλ = 0 must be invoked alongside δL1/δν̄1 = 0 to derive an
expression for ν̄1. Apart from this, all the expressions from (4.14) to (4.17) are
recovered if now Ulam = Re(1 − 4z2) and Dlam = 16/3Re2 are understood. If it is
assumed that φ′ vanishes in the interior as Re→∞, then away from the boundaries

U ′ = χU ′lam :=
(a− 2) + 2(a− c− 1)I

2[(a− 1) + (a− c− 1)I]
U ′lam, (4.19)

implying that the resulting mean interior optimal profile is

U(z) =
2 + χ

3
Re− 4χRe z2 as Re→∞. (4.20)

We now make the specific choice g := In and consider the various cases over n.

Case 0 6 n < 1

For 0 6 n < 1, it is easy to show from (4.15) and (4.16) that

I =
n

1− n
a− 1

a− c− 1
, Dm =

a2

4(a− 1)2
(1− n)2‖φ′ −U ′lam‖2

2 (4.21)

as Re→∞ so

fbound = inf
a,c,φ

a2nn(1− n)1−n

4(a− c− 1)n(a− 1)1−n ‖φ′ −U ′lam‖2
2. (4.22)

From this, minimization of fbound over φ at fixed a and c clearly corresponds to
minimizing ‖φ′ −U ′lam‖2

2. In the case of PCF, the work of Nicodemus et al. (1998a, b)
may be used to show that

inf ‖φ′ −U ′lam‖2
2 → 16/27× a/c×Dmax (4.23)

as Re → ∞ (see Appendix B: an equivalent expression may also reasonably be
inferred for PPF). Then subsequent optimization over a and c (a, c→ 3, 2/(n+ 1) as
Re→∞) produces the best bound

f 6 fbound = (1 + n)1+n(1− n)1−nDmax as Re→∞, (4.24)

where the optimal solution has

[D,Dm, Dv] = 1
2
(1− n2)Dmax[2, (1− n), (1 + n)], I =

1 + n

1− n . (4.25)
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In PCF, the associated asymptotic interior mean profile is

U ′ = −
(

3n+ 1

4

)
Re (4.26)

whereas for PPF, the interior profile has the parabolic form

U = Re

(
3 + n

4
− (1 + 3n)z2

)
. (4.27)

For the special case n = 0 when f = D, (4.24) reduces to Dmax which, for PCF, is
Nicodemus et al.’s (1998a) bound on the total dissipation of D 6 0.01087Re3 and the
associated interior mean profile is Busse’s (1970) famous 1

4
-shear-law result (Kerswell

1998).

Case n = 1: the efficiency functional

In the case of the efficiency functional, the consistency relations (4.15) and (4.16)
are

2(a− c− 1)I =
(a− 1)(Dm − Dlam) + Dlam

Dlam
, (4.28)

(Dm − Dlam)[(a− 1)Dm + aDlam]2 = a2D2
lam‖φ′ −U ′lam‖2

2 (4.29)

so that

fbound =
Dm[(a− 1)(Dm − Dlam) + Dlam]2

4(a− c− 1)D2
lam

. (4.30)

As Dm > Dlam, the best bound (∀Re) is obtained through minimizing Dm, which
corresponds to minimizing ‖φ′ − U ′lam‖2

2. Since this is exactly what is required when
the functional is the total dissipation, the optimal background fields are related by a
renormalization in the Reynolds number (see Appendix B). For asymptotically large
Re, Dm � Dlam and

fbound ≈ a2

4(a− c− 1)
‖φ′ −U ′lam‖2

2. (4.31)

Using the fact that

inf ‖φ′ −U ′lam‖2
2 → 16/27× a/c×Dmax (4.32)

(see Appendix B), then optimizing over a and c (a, c→ 3, 1 as Re→∞) produces the
best bound

f 6 fbound = 4Dmax as Re→∞, (4.33)

where the optimal solution has

D = Dv = 24/3D
1/3
lamD2/3

max ∼ O(Re8/3), Dm = 22/3D
2/3
lamD1/3

max ∼ O(Re7/3), (4.34)

I = 22/3D
−1/3
lam D1/3

max ∼ O(Re1/3). (4.35)

Since I � 1, the associated asymptotic interior mean profiles are just the laminar
states U = Ulam for both PCF and PPF.

Case n > 1

For n > 1, Dv � Dm = O(Dlam) so that (4.15) and (4.16) simplify to

Dm =
2n

n− 1
Dlam, I =

√
a2n

2(a− c− 1)(n+ 1)Dm
‖φ′ −U ′lam‖2. (4.36)
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Then

f 6 fbound = inf
a,c,φ

(n− 1)(n−1)/2

(n+ 1)(n+1)/22nD
(n−1)/2
lam

an+1

(a− c− 1)n
‖φ′ −U ′lam‖n+1

2 . (4.37)

Again using (4.23),

fbound 6
22(n+1)

33(n+1)/2

(n− 1)(n−1)/2

2n(n+ 1)(n+1)/2

D(n+1)/2
max

D
(n−1)/2
lam

inf
a,c

a3(n+1)/2

c(n+1)/2(a− c− 1)n

6 2
(n− 1)(n−1)/2(n+ 1)(n+1)/2

nn
D(n+1)/2
max

D
(n−1)/2
lam

∼ O(Re(n+5)/2) (4.38)

at a = 3(n+ 1)/2, c = (n+ 1)/2. The optimal field has

D = Dv = 2
(n+ 1)1/2

(n− 1)1/2
D1/2
maxD

1/2
lam ∼ O(Re5/2), Dm =

2n

n− 1
Dlam ∼ O(Re2), (4.39)

I =
(n2 − 1)1/2

n

D1/2
max

D
1/2
lam

∼ O(Re1/2). (4.40)

Again, since I � 1, the associated asymptotic interior mean profiles are just the
laminar states U = Ulam for both PCF and PPF.

4.2. f = Dmg(I) = DmI
n

As observed in § 3, since

DIn = DmI
n + DmI

n+1, (4.41)

an upper bound on DIn will also individually bound DmI
n+1 and DmI

n. For f = DmI
n

with n > 2 we cannot do better than this but for 0 6 n < 2 improved bounds are
available. For PCF, we start by defining the Lagrangian

L := (Dm − a〈ν · (NS)〉)In

=
〈φ′2 − {a|∇ν̂|2 + (a− 1)ν̄ ′21 + aφ′ν̂1ν̂3 − (a− 2)φ′′ν̄1}〉〈|∇ν̂|2〉n

〈(φ′ + ν̄ ′1)2〉n . (4.42)

The only difference between this Lagrangian and that in (4.8) is the coefficient of a
rather than a− 1 in the first factor of the numerator. As a result the analysis in § 4.1
carries over once any factor of a − c − 1 is replaced by a − c. So the problem is to
minimize

f 6 fbound := DmI
n =

(a− c)
n

DmI
2 (4.43)

over c > 0, a > c and φ which satisfy the spectral constraint (4.11) with Dm and I
defined implicitly by (4.15) and (4.16). The associated asymptotic mean shear is again
given by (4.14). For PPF, there is again the slight modification of the Lagrangian to
accommodate the constraints 〈φ〉 = 2

3
Re and 〈ν̄1〉 = 0 but otherwise the analysis is

unchanged. The mean interior parabolic profile for the present case is also given by
(4.20).
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Case 0 6 n < 1

In this case, Dv and Dm are large compared to Dlam and the asymptotic solutions
of (4.15) and (4.16) are

Dm =
a2

4(a− 1)2
(1− n)2‖φ′ −U ′lam‖2

2, I =
a− 1

a− c
n

1− n . (4.44)

Then

fbound = inf
a,c,φ

a2nn(1− n)1−n

4(a− c)n(a− 1)1−n ‖φ′ −U ′lam‖2
2. (4.45)

Using the fact that

inf ‖φ′ −U ′lam‖2
2 → 16/27× a/c×Dmax (4.46)

(see Appendix B), then optimizing over a and c (a, c → 2 − n, a/(1 + n) as Re → ∞)
produces the best bound

f 6 fbound =
4(1 + n)1+n(2− n)2−n

27
Dmax as Re→∞, (4.47)

where the optimal solution has

[D,Dm, Dv] = 4
27

(1 + n)(2− n)Dmax[3, (2− n), (1 + n)], I =
1 + n

2− n . (4.48)

The associated asymptotic mean shear in PCF is

U ′ = − 1
2
nRe (4.49)

and the interior parabolic profile in PPF

U = Re

[
n+ 4

6
− 2nz2

]
. (4.50)

For the special case n = 0 when f = Dm, (4.24) represents a bound on the dissipation
in the mean

Dm 6
16
27
×Dmax. (4.51)

The optimal asymptotic interior shear is precisely zero in this case for both PCF and
PPF.

Case n = 1

In this case

2(a− c)I =
(a− 1)(Dm − Dlam) + Dlam

Dlam
, (4.52)

(Dm − Dlam)[(a− 1)Dm + aDlam]2 = a2D2
lam‖φ′ −U ′lam‖2

2 (4.53)

so that

fbound =
Dm[(a− 1)(Dm − Dlam) + Dlam]2

4(a− c)D2
lam

. (4.54)

Since Dm > Dlam, the best bound (∀Re) is obtained through minimizing Dm, which
corresponds to minimizing ‖φ′ − U ′lam‖2

2. Hence, as in the case of the efficiency
functional, the optimal trial background field developed by Nicodemus et al. (1998a)
for maximum total dissipation is also the optimal trial background field for f = DmI
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but at a different Re. For asymptotically large Re, Dm � Dlam and the best bound is
obtained in the limit as a→ 1 (see below) so

fbound ≈ a2

4(a− c)‖φ
′ −U ′lam‖2

2. (4.55)

Using the fact that

inf ‖φ′ −U ′lam‖2
2 → 16/27× a/c×Dmax (4.56)

(see Appendix B), then optimizing over c (c→ a/2 as Re→∞) produces the bound

f 6 fbound =
16a

27
Dmax as Re→∞, (4.57)

which is minimized over a > 1 as a→ 1 at

f 6 fbound =
16

27
Dmax. (4.58)

The optimal solution has

[D,Dm, Dv] =
8

27
Dmax[3, 1, 2], I = 2, a− 1 =

27

4

Dlam

Dmax

∼ O(Re−1). (4.59)

The associated asymptotic interior mean profiles are just the laminar states U = Ulam

for both PCF and PPF. The fact that the optimal a → 1 indicates that the global
minimum can only just be reached.

Case n > 1

For the case n > 1, we are again forced to take a → 1 and obtain the very
conservative upper bound

fbound = 4
(n− 1)(n−1)/2(3n+ 1)(3n+1)/2

33(n+1)/2nn(n+ 1)n+1

D(n+1)/2
max

D
(n−1)/2
lam

∼ O(Re(n+5)/2). (4.60)

There is then a clear gap between this bound overestimate and the underestimate
secured in (3.27). To close this we are forced to reformulate the Lagrangian. In the
case of PCF consider

L := (Dv − a〈ν · (NS)〉)
(
Dv

Dm

)n−1

=
〈−(a− 1)|∇ν̂|2 − aν̄ ′21 − aφ′ν̂1ν̂3 + aφ′′ν̄1〉〈|∇ν̂|2〉n−1

〈(φ′ + ν̄ ′1)2〉n−1
. (4.61)

Proceeding as before, we consider

f 6L1 :=
〈−(a− c− 1)|∇ν̂|2 − aν̄ ′21 + aφ′′ν̄1}〉〈|∇ν̂|2〉n−1

〈(φ′ + ν̄ ′1)2〉n−1
(4.62)

where

c〈|∇ν̂|2〉+ a〈φ′ν̂1ν̂3〉 > 0 ∀ ν̂ with ∇ · ν̂ = 0 and ν̂(x, y,± 1
2
) = 0. (4.63)

Now 〈ν̂ · δL1/δν̂〉 = 0 implies the dissipation in the fluctuation field

Dv = DmI = 〈|∇ν̂|2〉 =
n− 1

n

〈−aν̄ ′21 + aφ′′ν̄1〉
a− c− 1

. (4.64)
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Optimization over ν̄1 gives

δL1

δν̄1

= 0⇒ 2[a+ (a− c− 1)I]ν̄ ′′1 = −[a+ 2(a− c− 1)]φ′′, (4.65)

which upon integration yields

U ′ := (φ′ + ν̄ ′1) =
a

2[a+ (a− c− 1)I]
(φ′ −U ′lam) +U ′lam. (4.66)

The consistency relations are then

Dm − Dlam =
a2

4[a+ (a− c− 1)I]2
‖φ′ −U ′lam‖2

2, (4.67)

n

n− 1
(a− c− 1)DmI + aDm − Dlam =

a2

2[a+ (a− c− 1)I]
‖φ′ −U ′lam‖2

2. (4.68)

The problem is to minimize

f 6 fbound := DmI
n = DvI

n−1 =
(a− c− 1)

(n− 1)
DmI

n (4.69)

over c > 0, a > 1 + c and φ which satisfy the spectral constraint (4.11) with Dm and I
defined implicitly by (4.67) and (4.68). The associated asymptotic mean interior shear
in PCF is given by

U ′ =
a

2[a+ (a− c− 1)I]
(φ′ −U ′lam) +U ′lam. (4.70)

Again, if it is assumed that φ′ vanishes in the interior as Re→ ∞ in PPF, then away
from the boundaries

U ′ = χU ′lam :=
a+ 2(a− c− 1)I

2[a+ (a− c− 1)I]
U ′lam, (4.71)

implying that the resulting mean interior optimal profile is

U(z) =
2 + χ

3
Re− 4χRe z2 as Re→∞. (4.72)

Case 1 < n < 2

When 1 < n < 2, Dv and Dm are large compared to Dlam and the asymptotic
solutions of (4.67) and (4.68) are

Dm =
(2− n)2

4
‖φ′ −U ′lam‖2

2, I =
n− 1

2− n
a

a− c− 1
. (4.73)

Then

fbound = inf
a,c,φ

an(n− 1)n−1(2− n)2−n

4(a− c− 1)n−1
‖φ′ −U ′lam‖2

2

6 inf
a,c

an+1(n− 1)n−1(2− n)2−n

4c(a− c− 1)n−1
× 16

27
×Dmax. (4.74)

Optimising over a and c (a→ 1 + n, c→ 1) as Re→∞ produces the best bound

fbound 6
4
27

(1 + n)1+n(2− n)2−nDmax as Re→∞, (4.75)
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where the optimal solution has

[D,Dm, Dv] = 4
27

(1 + n)(2− n)Dmax[3, (2− n), (1 + n)], I =
1 + n

2− n . (4.76)

The associated asymptotic interior mean shear in PCF is

U ′ = − 1
2
nRe (4.77)

and the interior parabolic profile in PPF

U = Re

[
n+ 4

6
− 2nz2

]
. (4.78)

Case n > 2

For n > 2 we can exploit the simple relationship

DIn = DmI
n + DmI

n+1 (4.79)

to immediately deduce the asymptotic bound for f = DmI
n. This is possible because

the bound for f = DIn with n > 1 is estimated above by a variational solution with
I → ∞ as Re→ ∞. This implies that the asymptotic maximal values of f = DIn and
DmI

n+1 coincide. Hence for n > 2

fbound 6 2
(n− 2)(n−2)/2nn/2

(n− 1)n−1

Dn/2
max

D
(n/2)−1
lam

∼ O(Re2+(n/2)), (4.80)

where a, c → 3n/2, n/2. The associated asymptotic interior mean profiles are just the
laminar states U = Ulam for both PCF and PPF.

5. Discussion
The formal result of this paper is the following theorem.

Theorem 1. For plane Poiseuille flow (PPF) and plane Couette flow (PCF), using
the constraints of total power balance, mean momentum balance, fluid incompressibility
and the boundary conditions, the following asymptotic bounds exist at large Re:

lim sup
T→∞

1

T

∫ T

0

D

(
Dv

Dm

)n
dt6


(1 + n)n+1(1− n)1−nDmax 0 6 n < 1

2
(n− 1)(n−1)/2(n+ 1)(n+1)/2

nn
D(n+1)/2

max

D
(n−1)/2
lam

1 6 n,
(5.1)

lim sup
T→∞

1

T

∫ T

0

Dm

(
Dv

Dm

)n
dt 6


4
27

(1 + n)n+1(2− n)2−nDmax 0 6 n < 2

2
(n− 2)(n−2)/2nn/2

(n− 1)n−1

Dn/2
max

D
(n−2)/2
lam

2 6 n,
(5.2)

where D, Dm and Dv are the instantaneous total dissipation and dissipations in the mean
and fluctuation fields, Dmax is the maximal total dissipation under the same constraints
and Dlam is the laminar total dissipation. For PCF, it is known that†

0.01Re3 ≈ Dmax 6Dmax 6 Dmax = 0.01087Re3 (5.3)

† Recent numerical calculations actually indicate that Dmax ≈ 0.0086Re3 – see Plasting &
Kerswell (2002).
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Figure 1. Asymptotic mean profiles of the optimal solutions in plane Couette flow for f = DIn (a)
and f = DmI

n (b). In both plots, the solid line represents the laminar profile which is recovered for
f = DIn with n > 1 and for f = DmI

n for n > 2; (b) shows that there is zero interior shear for
f = Dm.

in units of ν3/d4 where ν is the kinematic viscosity and d the plate separation, and
Dlam = Re2. The Reynolds number Re is based upon the plate separation and either the
total velocity differential across the plates (PCF) or 3

2
of the mean velocity (PPF). For

PPF, it is conjectured that Dmax is 64
27

times the PCF value.

Figures 1 and 2 show how the interior mean profiles of the optimal solutions vary as
the functional maximized is changed. Practically, the hope must be that the right-hand
sides of (5.1) and (5.2) also provide upper bounds on D(Dv/Dm)n and Dm(Dv/Dm)n

respectively. As way of comparison, the standard Prandtl–von Kármán mixing
length closure predicts that I = O(logRe), D = Dv = O(Re3/(logRe)2) and Dm =
O(Re3/(logRe)3) for asymptotically large Re so that D(Dv/Dm)n = O(Re3(logRe)n−2)
and Dm(Dv/Dm)n = O(Re3(logRe)n−3). Other results established in this paper are the
following.

(i) For the particular family of functionals f = Dg(I), it has been shown that the
classical Euler–Lagrange approach of Howard–Busse and the background approach
of Doering–Constantin can be derived from the same Lagrangian (see Appendix D).
This means that the variational formulations are complementary and trial function
estimates secured in each can then be used to bracket the true bound value. This
finding extends earlier demonstrations in the context of bounding the total energy
dissipation in plane Couette flow (Kerswell 1998) and heat flux in Boussinesq con-
vection (Kerswell 2001). It now seems clear that whenever a background variational
problem can be formulated, the corresponding Howard–Busse approach will yield the
complementary variational problem.

(ii) An explicit demonstration is given of the intimate connection between the
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Figure 2. Asymptotic mean profiles of the optimal solutions in plane Poiseuille flow for f = DIn

(a) and f = DmI
n (b). In both plots, the solid line represents the laminar profile which is recovered

for f = DIn with n > 1 and for f = DmI
n for n > 2; (b) shows that there is zero interior shear for

f = Dm.

background method and the classical Howard–Busse approach for bounding the total
energy dissipation in plane Poiseuille flow (see Appendix C). This ‘unification’ (for the
PCF equivalent see Kerswell 1998) is important because it provides the foundation
for constructing variational problems to treat more general dissipation functionals.

(iii) The multiple-boundary-layer technique discovered by Busse has successfully
been developed to treat general dissipation functionals (see Appendix A). A priori, it
is unclear how good the ensuing bound underestimates are until comparison is made
with the bound overestimate available within the complementary Doering–Constantin
background method. For all functionals studied here, the multiple-boundary-layer
technique is found to successfully estimate the true maximum or upper bound.

(iv) In the process of developing bounds for functionals of the form f = DmI
n, we

have shown how the generation of an appropriate background variational problem is
not algorithmic. The ‘obvious’ formulation which works for 0 6 n 6 1 essentially fails
for n > 1. A formal upper bound is still available but this can never be refined to
approach the true bound value by selecting improved trial functions. This is because
the saddle point of the Lagrangian which represents the true bound value is no longer
in the region accessible by the background technique and so the best bound estimate
is only a non-optimal boundary value (see expression (4.60)). A simple reformulation
(see (4.61)) however restores the duality with the Howard–Busse estimate for n > 1.

(v) The formal variational problem to bound the efficiency functional has been
derived (see (4.28)–(4.30)) and the optimal background field related to that for the
total dissipation case. The optimal efficiency background field is found to be given by
the optimal total-dissipation background field after a rescaling of Re (see Appendix
B). Equation (4.14) then implies that a logarithmic layer only appears in the optimal
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Figure 3. A plot of the optimal mean profiles (solid lines) which emerge from the
Busse–Doering–Constantin problem (which maximizes the total dissipation D) in friction ve-
locity–wall units at Re = 2× 104, 4× 104 and 7.33× 104 (the larger Re, the further the mean profile
reaches across the z+-axis). Also drawn for comparison (dashed line) is the traditional fit to the
data: u+ = z+ and u+ = 2.5 ln z+ + 5.5. The plot shows the lack of any log-layer signature in the
optimal mean profiles. Full details are available in Plasting & Kerswell (2002).

mean profile for the efficiency functional if it exists in the total dissipation case.
This seems to contradict the findings of Malkus & Smith (1989). Recent numerical
calculations aimed at solving the Busse and Doering–Constantin problem for the total
dissipation in PCF simultaneously have found no evidence for a logarithmic layer in
the mean profile (see figure 3 and Plasting & Kerswell 2002 for details). Furthermore,
the asymptotic interior profiles for both PCF and PPF are found to be unrealistic in
that the laminar shear is reproduced.

(vi) As noted by Malkus & Smith, the efficiency functional is clearly distinguished
amongst the suite of functionals f = DIn as being marginally influenced by the
dissipation ratio I . This is evident in the structure of the optimal solution which
changes from (I, D) = O(1, Re3) for 0 6 n < 1 (total dissipation case is n = 0), through
(I, D) = O(Re1/3, Re8/3) for the efficiency functional (n = 1) to (I, D) = O(Re1/2, Re5/2)
for n > 1. Intriguingly, experimental data are also believed marginal in this sense
with (I, D) = O(logRe, Re3/(logRe)2) for large Re.

Given the generality of the analysis presented, it is straightforward to establish
further results. In plane Couette flow, for example, it is currently thought that the
interior mean shear will vanish as Re → ∞, that is, there is no velocity defect law.
The asymptotic multiple-boundary-layer analysis detailed in Appendix A for general
functionals f = f(D,Dm,Dv) can be used to address the appropriate question: which
functionals lead to vanishing interior shear in their optimal solutions as Re → ∞?
In both shear cases (see (A 53) for PPF and (A 62) for PCF) since µ1−rN b2

1 � Re, the
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criterion for a shearless interior is that

∆U0 = Re

(
1− 1√

Dlam

γ

α

)
. (5.4)

Armed with the definitions (A 3) and (A 4), this reduces to

−Dv(fD + fDv
) = 0 ⇒ f = f(D−Dv,Dm) = f(Dm) (5.5)

or, in other words, only a pure functional of the dissipation in the mean will lead to
an asymptotically shearless interior. So if the interior shear is an important descriptor
of the flow, it would seem that within the suite of functionals f = f(D,Dm,Dv) only
f = Dm is worth studying for PCF. Conversely, this choice cannot be correct for PPF
since this is believed to have a velocity defect law where the interior shear does not
vanish. Hence the implication is that if a universal action functional exists, it is not
contained within the suite of dissipation functionals considered here.

Of course, other aspects of the turbulent flow should be captured by the optimal
variational solution beyond just the interior mean profile. In this paper, we have
chosen to focus upon the ratio of the dissipations I and the total dissipation D.
Within the suite of functionals f = DIn, the efficiency functional has been found
to be the most interesting in this respect, confirming the conclusion of Malkus &
Smith (1989). However, the efficiency functional seems clearly not to be the ‘action’
functional if, of course, such a thing exists but nevertheless it may be close to it.
Given this, it is worth examining the extended suite of functionals f = Dg(I). The
variational problem is as detailed in equations (4.15), (4.16) and (4.17). Working in the
asymptotic limit Re → ∞, and making the simplifying assumption that Dm � DlamI
allows (4.17) to be rewritten as

fbound 6
4a3(a− c− 1)

27[(a− 1) + (a− c− 1)I]2c
× g(I)2

g(I)′
Dmax. (5.6)

Eliminating c by using the second consistency relation (4.16), gives

fbound = inf
I,a>1

4a3

27(a− 1)2
× (g(I)− g(I)′I)2

g(I)− (I + 1)g(I)′
Dmax = inf

I

(g(I)− g(I)′I)2

g(I)− (I + 1)g(I)′
Dmax

(5.7)

(the efficiency case g = I has Dm = O(DlamI) and hence is excluded). From this it is
hard to see how an optimal value of I scaling with logRe will emerge, unless g(I)
contains the Reynolds number in some explicit fashion. Moreover, I ∼ O(logRe)
will only lead to D ∼ O(Re3/ logRe) rather than the observed D ∼ O(Re3/(logRe)2)
scaling of real flows. The implication of this exploratory calculation seems to be that
the ‘action’ functional is probably not a simple functional of the dissipations.

In summary, this paper has shown how to extend some existing variational tools
to treat new functionals. A first step has been to consider a family of generalized
dissipation functionals motivated by previous work (Malkus & Smith 1989). The so-
called ‘efficiency’ functional has emerged as a distinguished choice within this family
but its wider importance beyond this is not clear. The challenge therefore remains
to find a functional whose optimization over a tractably reduced set of dynamical
constraints leads to the emergence of realistic optimal velocity fields. Unfortunately,
it remains unclear how to construct such a functional beyond intelligent guessing.



Upper bounds on dissipation functionals 261

Appendix A. Multiple-boundary-layer solutions
In this Appendix we develop a solution v to the Euler–Lagrange problem (3.2) of

§ 3 at asymptotically large Re for general f, making only mild assumptions on the
solution field. The problem to be treated in v is

[α(uw − h〈huw〉)− γh]
 w

0
u

+ ∇p = ∇2v, (A 1)

∇ · v = 0, v(x, y,± 1
2
) = 0 (A 2)

where

α :=
(D− Dlam)fD + (Dm − Dlam)fDm

+DvfDv

(D− Dlam)fD + 2(Dm − Dlam)fDm
+ (Dv −Dm + Dlam)fDv

, (A 3)

γ := 1
2

√
Dlam

(D+Dm − 2Dlam)fD + 2(Dm − Dlam)fDm
+DvfDv

(D− Dlam)fD + 2(Dm − Dlam)fDm
+ (Dv −Dm + Dlam)fDv

, (A 4)

and h = h(z) is given (with 〈h2〉 = 1). An asymptotic solution is calculated below
under the assumption that µ := 〈huw〉 is large compared to Re, which is itself large,
and that

〈(uw − h〈huw〉)2〉
〈huw〉2 � 1. (A 5)

The latter criterion implies that the normalized mean flow gradient

Ū ′(z) :=
U ′ +

√
Dlamh

〈huw〉 =
uw − h〈huw〉
〈huw〉

must have a boundary layer structure and effectively vanish in the interior. This is
the physically observed case of interest and appears readily satisfied by all f studied
here. The solution strategy is to construct a multiple-boundary-layer structure for v
in which Ū ′ gradually relaxes from being O(1) in the innermost boundary layer where
uw = 0 at the plates to small values in the interior where uw ≈ h〈huw〉. This procedure
was introduced by Busse (1969, 1970, 1978) to develop trial function underestimates
of the maximal energy dissipation possible in convective turbulence and turbulent
shear flows. The purpose here is to demonstrate the usefulness of this technique for
more general variational problems addressing other functionals.

Following Busse’s original work, we look for a two-dimensional solution indepen-
dent of the streamwise coordinate (∂/∂x = 0)

v = ∇× (ψẑ) + ∇× ∇× (vẑ) =

 ψy
vyz
−vyy

 =

 u
·
w

 . (A 6)

Taking ẑ · ∇× (A 1) and ẑ · ∇× ∇× (A 1) gives respectively

[α(uw − h〈huw〉)− γh]wy = ∇2uy, (A 7)

[α(uw − h〈huw〉)− γh]uyy = ∇4w. (A 8)

We search for a solution in the form of Busse’s multiple-boundary-layer ansatz,

[u, w] =

N∑
n=1

√
2[un(z), wn(z)] cos kny, (A 9)
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where the N boundary layers are defined by the stretched coordinates

ξn := µrn( 1
2
∓ z), (A 10)

and the wavenumbers k2
n = µqnb2

n (bn = O(1)). The nth harmonic has a triple-deck
structure. In the inner boundary layer deck, which defines the nth layer (ξn = O(1)),
the solution is

[un(z), wn(z)] = [µ(1/2)+pn ûn(ξn), µ
(1/2)−pn ŵn(ξn)] (A 11)

so that ûn, ŵn = O(1) and the ratio of z-lengthscales to x-lengthscales is small. The
solution in the intermediate deck, where the ratio of z-lengthscales to x-lengthscales
is O(1), makes no significant contribution to the nth harmonic dissipation and so is
suppressed. The outer deck of the first harmonic (n = 1) coincides with the main
stream ( 1

2
− |z| = O(1) referred to as the zeroth layer: r0 = 0), while those for the

higher harmonics (2 6 n 6 N) lie in the (n − 1)th layer and have large ratio of
z-lengthscales to x-lengthscales. The outer-deck solution for the nth harmonic is

[un(z), wn(z)] = [µ(1/2)+sn ũn(ξn−1), µ
(1/2)−sn w̃n(ξn−1)], (A 12)

where ũn, w̃n = O(1). The intriguing feature of Busse’s multiple-boundary-layer
structure is the interweaving of neighbouring harmonics so that uw − h〈huw〉 =
µ(ûnŵn + ũn+1w̃n+1 − h) remains close to zero in all layers except the wall boundary
layer (n = N). Within this boundary layer approximation, equations (A 7) and (A 8)
become: in the interior (n = 0)

−µ1−2s1−q1 [α(ũ1w̃1 − h(z))− γh(z)/µ]w̃1 = b2
1ũ1, (A 13)

−µ1+2s1−q1 [α(ũ1w̃1 − h(z))− γh(z)/µ]ũ1 = b2
1w̃1; (A 14)

in the nth layer (1 6 n 6 N − 1) near z = 1
2

µ1−2pn−2rnα(ûnŵn + ũn+1w̃n+1 − h0)ŵn = û′′n, (A 15)

−µ1+2pn−4rn+qnα(ûnŵn + ũn+1w̃n+1 − h0)ûn = ŵiv
n /b

2
n, (A 16)

−µ1−2sn+1−qn+1α(ûnŵn + ũn+1w̃n+1 − h0)w̃n+1 = b2
n+1ũn+1, (A 17)

−µ1+2sn+1−qn+1α(ûnŵn + ũn+1w̃n+1 − h0)ũn+1 = b2
n+1w̃n+1; (A 18)

and in the innermost wall layer (n = N) near z = 1
2

µ1−2pN−2rN α(ûNŵN − h0)ŵN = û′′N, (A 19)

−µ1+2pN−4rN+qNα(ûNŵN − h0)ûN = ŵiv
N/b

2
N, (A 20)

where h0 := h( 1
2
). The fact that γh0 can be ignored relative to α(uw − h〈huw〉) in all

but the interior equations follows from the integral power relation

2γµ = 〈|∇v|2〉+ 2α〈(uw − h〈huw〉)2〉. (A 21)

These boundary layer equations imply

−2s1 − q1 = 2s1 − q1, −2pN − 2rN = 2pN − 4rN + qN,

−2pn − 2rn = 2pn − 4rn + qn = −2sn+1 − qn+1,

−2sn+1 − qn+1 = 2sn+1 − qn+1,

}
n = 1, . . . , N − 1,

 (A 22)

which indicate an equipartition of dissipations within a given boundary layer, that
is, the dissipations associated with each component field (ûn, ŵn, ũn+1, w̃n+1) are all
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of the same order. Also, it follows immediately that sn = 0 for n = 1, . . . , N. Further
implications of equations (A 15)–(A 18) are that

1

b2
n

∫ ∞
0

ŵ′′2n dξn =

∫ ∞
0

û′2n dξn, n = 1, . . . , N, (A 23)

ũ2
n+1 = w̃2

n+1 = h0 − ûnŵn,
b2
n+1 = µ1−qn+1α(h0 − ûnŵn − ũn+1w̃n+1),

}
n = 1, . . . , N − 1, (A 24)

b2
1 = µ1−q1 [α(h− ũ1w̃1) + γh/µ], (A 25)

ũ1 = w̃1 =
√
h(z). (A 26)

The problem for the nth harmonic is then

û′′n = −b2
n+1ŵn, ŵiv

n = b2
nb

2
n+1ûn (A 27)

provided ûnŵn differs from h0, otherwise ũn+1 and w̃n+1 vanish. In the region where
ûnŵn = h0, (A 16) can be rewritten as

1

b2
n

ŵiv
n =

ŵ′′n ŵn − 2ŵ′2n
ŵ5
n

h2
0. (A 28)

In the region described by this equation wn has to tend to infinity in order to join
µpnw̃n while ŵ′′n and ŵ′′′n have to tend to zero in order to yield finite values for the
dissipation integrals. This condition together with the condition ŵn = ŵ′n = ûn = 0
at ξn = 0 suffices to determine the solution of (A 27) and (A 28). Busse (1969a) has
solved this problem and it suffices here only to note that∫ ∞

0

(
ŵ′′2n
b2
n

+ b2
n+1w̃

2
n+1

)
dξn = 3βh0

(
b4
n+1

bn

)1/3

(A 29)

for n = 1, . . . , N − 1 where β ≈ 0.624. In the interior

b2
1〈ũ2

1〉 = b2
1〈w̃2

1〉 = h0h1b
2
1, (A 30)

where h1 = 〈|h(z)|〉/h0. In the innermost layer, h0 − ûNŵN = O(1) so that

α = O(µa = µ2pN+2rN−1). (A 31)

With this realization, write α = µaα̂ (α̂ = O(1)), and then a change of variable,

Ω = ŵNb
−1/3
N (α̂h0)

1/6h
−1/2
0 , Θ = ûNb

1/3
N (α̂h0)

−1/6h
−1/2
0 , x = ξNb

1/3
N (α̂h0)

1/3, (A 32)

reduces the innermost boundary layer equations to

[1−ΘΩ]Θ = Ωiv, (A 33)

−[1−ΘΩ]Ω = Θ ′′. (A 34)

These together with the corresponding boundary conditions have been solved by
Howard (1963) with the result that∫ ∞

0

ŵ′′2N
b2
N

dξN =

∫ ∞
0

û′2N dξN =
σh0(α̂h0)

2/3

b
1/3
N

,

∫ ∞
0

(h0 − ûNŵN)2 dξN =
4σh2

0

(α̂h0)1/3b
1/3
N

,

(A 35)
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where σ ≈ 0.337. Within this boundary layer approximation,

Dv = 〈|∇v|2〉 = 〈(∇2vy)
2〉+ 〈|∇u|2〉

≈
{

2

N∑
n=1

µ1−2pn+3rn−qn
∫ ∞

0

ŵ′′2n
b2
n

dξn + 2

N−1∑
n=1

µ1+qn+1−rn
∫ ∞

0

b2
n+1w̃

2
n+1 dξn

}
+ µ1+q1b2

1〈w̃2
1〉

+

{
2

N∑
n=1

µ1+2pn+rn

∫ ∞
0

û′2n dξn + 2

N−1∑
n=1

µ1+qn+1−rn
∫ ∞

0

b2
n+1ũ

2
n+1 dξn

}
+ µ1+q1b2

1〈ũ2
1〉,

≈ 2µ1+q1h0h1b
2
1 + 12βh0

N−1∑
n=1

µ1+qn+1−rn
(
b4
n+1

bn

)1/3

+ µ2−rN+a 4σh0(α̂h0)
2/3

b
1/3
N

, (A 36)

Dm − Dlam = 〈(uw − h〈huw〉)2〉 ≈ 2µ2−rN
∫ ∞

0

(ûNŵN − h0)
2 dξN,

≈ µ2−rN 8σh2
0

(α̂h0)1/3b
1/3
N

(A 37)

(it can be shown a posteriori that the contribution from the innermost layer to the
dissipation in the mean dominates all others), and

D = Dlam +
√
Dlamµ. (A 38)

The problem of extremizingL in (3.1) over v has been transformed into the problem
of extremizing L over the multiple-boundary-layer wavenumbers b = (b1, b2, . . . , bN)
and µ. The Euler–Lagrange equations are

(fDv
+ Λ)

∂Dv

∂bn

∣∣∣∣
µ

= 0, n = 1, . . . , N − 1, (A 39)

α
∂Dm

∂bN

∣∣∣∣
µ

+
∂Dv

∂bN

∣∣∣∣
µ

= 0, (A 40)

(fD − Λ)
∂D

∂µ

∣∣∣∣
b

+ (fDm
+ Λ)

∂Dm

∂µ

∣∣∣∣
b

+ (fDv
+ Λ)

∂Dv

∂µ

∣∣∣∣
b

= 0, (A 41)

D−Dm −Dv = 0. (A 42)

Equations (A 39) and (A 40) define the optimal wavenumbers through the relations

µ1+q1h1b1 − βµ1+q2−r1
(
b2

b1

)4/3

= 0, (A 43)

4µ1+qn−rn−1

(
b4
n

bn−1

)1/3

− µ1+qn+1−rn
(
b4
n+1

bn

)1/3

= 0, n = 2, . . . , N − 1, (A 44)

µ2−rN+a σ(α̂h0)
2/3

b
4/3
N

− µ1+qN−rN−14β

(
bN

bN−1

)1/3

= 0, (A 45)

which only depend on f through α. For finite solutions, the scaling relations

1 + qn − rn−1 = 1 + qn+1 − rn, n = 1, . . . , N, (A 46)

must hold (qN+1 = 1 + a) which imply that each boundary layer contributes at equal
order to the dissipation in the fluctuation field. The optimizing wavenumbers then
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follow as

b1 =

{(
σ

β

)3/4

(α̂h0)
1/24−N

[
44/3β

h1

]1−4−N}1/(2−4−N )

, (A 47)

bn+1 = 4nb1

(
h1b1

44/3β

)1−4−n

,
b

4/3
n+1

b
1/3
n

= 4n−1h1b
2
1/β, n = 1, . . . , N − 1. (A 48)

Together with (A 22), (A 46) leads to the scalings

rn = (1 + a)
1− 4−n

2− 4−N
, 2pn = (1 + a)

4−n

2− 4−N
, qn = (1 + a)

2− 4−n+1

2− 4−N
, sn = 0.

(A 49)

Then

Dv = 2µ2+a−rN h0h1b
2
1(4

N − 1), Dm = Dlam + 2µ2−rN h0h1b
2
1

4N

α̂
(A 50)

and (A 42) becomes

1
2

√
Dlam = µ1−rN h0h1b

2
1

[
µa(4N − 1) +

4N

α̂

]
. (A 51)

Equation (A 41) reproduces (3.5) so that

α :=
(D− Dlam)fD + (Dm − Dlam)fDm

+DvfDv

(D− Dlam)fD + 2(Dm − Dlam)fDm
+ (Dv −Dm + Dlam)fDv

. (A 52)

The solution procedure consists of finding α = α̂µa from (A 52), b1 from (A 47) and
finally µ in terms of Re from (A 51) which then allows D, Dv , Dm and hence f to be
expressed in terms of known constants and Re.

One of the interesting outcomes of this calculation is the mean flow profile of
the optimal solution. This can be compared directly with observations and gives an
immediate indication of how important dissipation in the mean is to the functional
under consideration.

Mean profile for plane Poiseuille flow

The change in mean flow across half the interior (z ∈ [0, 1
2
]) from z = 1

2
into the

mid-plane is

∆U0 = −
∫ 1/2

0

U ′ dz = −
∫ 1/2

0

(uw − h〈huw〉 − 8Re z) dz

= µ

∫ 1/2

0

(h− ũ1w̃1) dz + Re = Re− h0h1

γ

2α
+ µ1−rN b

2
1

2α̂
, (A 53)

since b2
1 = 2µrN α̂

∫ 1/2

0
(h− ũ1w̃1) dz + µ−q1h0h1γ. The corresponding change across any

boundary layer except the innermost near z = 1
2

is

∆Un = µ1−rn
∫ ∞

0

(h0 − ûnŵn − ũn+1w̃n+1) dξn,

=
µ1−rN

α̂

∫ ∞
0

(
ŵ′′2

b2
n

+ b2
n+1w̃

2
n+1

)
dξn = µ1−rN h1

b2
1

α̂
3× 4n−1 (A 54)
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so that the total change across the first (N − 1)th boundary layer is

N−1∑
n=1

∆Un = 3µ1−rN h1

b2
1

α̂

N−1∑
n=1

4n−1 = µ1−rN h1

b2
1

α̂
(4N−1 − 1). (A 55)

Across the innermost layer, the mean flow change is

∆UN = µ1−rN
∫ ∞

0

(h0 − ûNŵN) dξN =
µ1−rN h0

b
1/3
N (α̂h0)1/3

{∫ ∞
0

(1− ΩΘ) dx = 5σ

}
,

= µ1−rN h1

b2
1

α̂
5× 4N−1. (A 56)

The condition of mass flux conservation,

〈U〉 = 2
3
Re = 2

∫ 1/2

0

(z(h− ũ1w̃1) + 8Re z2) dz +

N−1∑
n=1

∆Un + ∆UN, (A 57)

automatically follows from the implied power balance 2γµ = 2α〈(uw − h〈huw〉)2〉 +
〈|∇v|2〉. As an example, set f = D, then α = α̂ = 1 (a = 0),

Λ = − D
Dm

≈ −2 + 4−N, γ =
3− 4−N

2− 4−N
2Re√

3
(A 58)

(ignoring the laminar mean dissipation, O(Re2), relative to the turbulent dissipation
in the mean, O(µ2−rN )) and (A 51) becomes

µ1−rN b2
1 =

4Re

3(2× 4N − 1)
. (A 59)

Then [
∆U0,

N−1∑
n=1

∆Un,∆UN

]
⇒ [

1
4
Re, 1

12
Re, 5

12
Re
]

as Re→∞. (A 60)

This means that the predicted asymptotic mean profile has the form

U0 = 3
4
Re(1− 1

3
z2)x̂ (A 61)

so that it joins the boundary at 2/3 of its maximal value at the channel centre (Busse
1970, p. 237).

Mean profile for plane Couette flow

In the case of PCF where u(x, y,± 1
2
) = ∓ 1

2
Re, h = h0 = h1 = 1, the changes in

the mean flow across half the interior, the first (N − 1)th boundary layer and the
innermost boundary layer going from the upper plate z = 1

2
to the channel centre

z = 0 are

∆U0 = 1
2

(
Re− γ

α
+ µ1−rN b

2
1

α̂

)
, (A 62)

N−1∑
n=1

∆Un = µ1−rN b
2
1

α̂
(4N−1 − 1),

∆UN = µ1−rN b
2
1

α̂
5× 4N−1. (A 63)
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The implicit power balance relation 2γµ = 2α〈(uw − h〈huw〉)2〉+ 〈|∇v|2〉 ensures that
the velocity drop across the half-layer is consistent,

∆U0 +

N−1∑
n=1

∆Un + ∆UN = 1
2
Re. (A 64)

Again taking f = D as an example, then α = α̂ = 1 (a = 0),

Λ = − D
Dm

≈ −2 + 4−N, γ =
3− 4−N

2− 4−N
Re

2
, µ1−rN b2

1 =
Re

2(2× 4N − 1)
, (A 65)

so that [
∆U0,

N−1∑
n=1

∆Un,∆UN

]
⇒ [ 1

8
Re, 1

16
Re, 5

16
Re] as Re→∞. (A 66)

This means that the predicted asymptotic mean profile has the form

U0 = − 1
4
Re x̂. (A 67)

If f = Dm, then Λ = −2, α = α̂ = 1/2, a = 0, γ = Re/2, µ1−rN b2
1 = Re/(2(3× 4N − 1))

and

Dv = 2µ2−rN b2
1(4

N − 1), Dm = Re2 + µ2−rN b2
14× 4N,

D = Re2 + 2µ2−rN b2
1(3× 4N − 1).

}
(A 68)

Then [
∆U0,

N−1∑
n=1

∆Un,∆UN

]
⇒ [0, 1

12
Re, 5

12
Re] as Re→∞. (A 69)

This means that the predicted asymptotic mean profile has zero shear across the
interior. Finally if f = Dv , then Λ = −2, α = α̂ = 2, a = 0, γ = Re, µ1−rN b2

1 =
Re/(3× 4N − 2) and

Dv = 2µ2−rN b2
1(4

N − 1), Dm = Re2 + µ2−rN b2
14
N, D = Re2 + µ2−rN b2

1(3× 4N − 2).

(A 70)

Then [
∆U0,

N−1∑
n=1

∆Un,∆UN

]
⇒ [ 1

4
Re, 1

24
Re, 5

24
Re] as Re→∞. (A 71)

This means that the predicted asymptotic mean profile has a 1
2
-shear law across the

interior.

Appendix B
B.1. Plane Couette flow

Nicodemus et al. (1998a, b) have considered the problem of evaluating

λ := inf
Φ,â>1

â2

4(â− 1)R̂e
‖Φ′ + 1‖2

2 (B 1)

over all functions Φ = Φ(z) and scalars â > 1 which satisfy the spectral constraint
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that

‖∇ν̂‖2
2 +

âR̂e

â− 1
〈Φ′ν̂1ν̂3〉 > 0 (B 2)

for any incompressible ν̂ which vanish on the boundaries z = ± 1
2

and∫ 1/2

−1/2

Φ′ dz = −1. (B 3)

Through the use of a sophisticated trial function, they were able to estimate this

infimum, λ = λ(R̂e), finding in particular that

λ→ 0.01087, â→ 3 as R̂e→∞. (B 4)

Given their solution, (λ(R̂e), â(R̂e)), we then know for all Φ satisfying

‖∇ν̂‖2
2 + µ̂〈Φ′ν̂1ν̂3〉 > 0,

∫ 1/2

−1/2

Φ′ dz = −1, (B 5)

that

inf
Φ
‖Φ′ + 1‖2

2 =
4(â(R̂e)− 1)2

â(R̂e)3
µ̂λ(R̂e), (B 6)

where µ̂ := âR̂e/(â− 1). In particular,

inf
Φ
‖Φ′ + 1‖2

2 → 16
27
× 0.01087× µ̂ as R̂e→∞. (B 7)

In the main body of the text, the problem for the background field is exactly given

by (B 5) and (B 6) once the association µ̂ = âR̂e/(â− 1) = aRe/c is made (φ = ReΦ).
This means that the required background field at Re is given by the background field

found by Nicodemus et al. (1998a, b) at the different Reynolds number R̂e.
We now state the result required for the main body of the text. If the background

field is rescaled, φ := ReΦ, then (B 7) means that for all φ such that

‖∇ν̂‖2
2 + µ〈φ′ν̂1ν̂3〉 > 0,

∫ 1/2

−1/2

φ′ dz = −Re, (B 8)

then

inf
φ
‖φ′ + Re‖2

2 → 16
27
µ×DPCF

max as Re→∞ (B 9)

where DPCF
max := 0.01087Re3.

B.2. Plane Poiseuille flow

The Doering–Constantin problem for bounding the total dissipation in PPF is (see
Appendix C)

D := inf
φ,â>1

â2

4(â− 1)
‖φ′ + 8R̂e z‖2

2 (B 10)

over all scalars â > 1 and functions φ = φ(z), where φ(± 1
2
) = 0 and 〈φ〉 = 2

3
R̂e which

also satisfy the spectral constraint that

‖∇ν̂‖2
2 +

â

â− 1
〈φ′ν̂1ν̂3〉 > 0 (B 11)
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for any incompressible ν̂ , where ν̂(x, y,± 1
2
) = 0. Although this problem has not been

solved, there is enough similarity with the corresponding PCF problem to reasonably
speculate that

D → 64
27
× 0.01087R̂e

3
, â→ 3 as R̂e→∞. (B 12)

The factor 64
27

comes from the ratio of dissipation bounds produced by Busse in PPF
and PCF. That â should have the same limiting value is suggested by the optimal
solution in the PCF problem where φ develops two boundary layers and very little
structure in the interior at large Re. In the PPF problem, the same boundary layer
structure should emerge but now organized symmetrically about the mid-plane.

By reasoning similar to that used above in §B.1, and modulo the assumption (B 12)
we can conclude that for all φ such that

‖∇ν̂‖2
2 + µ〈φ′ν̂1ν̂3〉 > 0,

∫ 1/2

−1/2

φ dz = 2
3
Re, φ(± 1

2
) = 0, (B 13)

then

inf
φ
‖φ′ + 8Re z‖2

2 → 16
27
µ×DPPF

max as Re→∞ (B 14)

where DPPF
max := 64

27
× 0.01087Re3.

Appendix C
Here we demonstrate how the Doering–Constantin formulation for putting an

upper bound on the energy dissipation in constant-mass-flux plane Poiseuille flow
may be derived from the same functional as Busse’s (1970) upper bounding problem.
Doering & Constantin originally looked at lower bounding the energy dissipation in
constant-pressure-gradient plane Poiseuille flow (Constantin & Doering 1995).

Using the non-dimensionalization described in § 2.2, the starting point is the func-
tional

L = lim sup
T→∞

1

T

∫ T

0

dt{〈|∇u|2〉 − 〈aν · (NS)〉+ λ〈 2
3
Re− u · x̂〉}, (C 1)

where

(NS) :=
∂u

∂t
+ u · ∇u+ ∇p− Ax̂− ∇2u. (C 2)

The Lagrange multiplier fields ν and λ impose the Navier–Stokes equations and the
definition of the Reynolds number as constraints. Setting u(x, t) = φ(z)x̂+ ν(x, t) with
〈ν〉 = 0 and boundary conditions φ(± 1

2
) = νi(x, y,± 1

2
) = 0 means that L can be

rewritten as

L = 〈φ′2〉+ λ〈 2
3
Re− φ〉 − lim sup

T→∞
1

T

∫ T

0

dt〈(a− 1)|∇ν|2

+aν1ν3φ
′ − (a− 2)φ′′ν1 − µν1〉, (C 3)

where µ is the Lagrange multiplier which now imposes 〈ν1〉 = 0 (〈ν2〉 = 〈ν3〉 = 0 are
forced by the boundary conditions). The Doering–Constantin and Busse variational
problems stem from realizing that the stationary point(s) of L occur for steady ν or
equivalently coincide with the stationary point(s) of

D = 〈φ′2〉+ λ〈 2
3
Re− φ〉 − 〈(a− 1)|∇ν|2 + aν1ν3φ

′ − (a− 2)φ′′ν1 − µν1〉. (C 4)
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Therefore the full set of Euler–Lagrange equations which must be solved at fixed Re
(constant mass flux) is

δD

δφ
= −2φ′′ − λ+ aν1ν3

′ + (a− 2)ν̄ ′′1 = 0, (C 5)

δD

δa
= 〈|∇ν|2 + ν1ν3φ

′ − φ′′ν1〉 = 0, (C 6)

δD

δλ
= 2

3
Re− 〈φ〉 = 0, (C 7)

δD

δµ
= 〈ν1〉 = 0, (C 8)

δD

δν
= 2(a− 1)∇2ν − aφ′

 ν3

0
ν1

+ ∇p+ [(a− 2)φ′′ + µ]x̂ = 0. (C 9)

If the fluctuation field ν is split into a mean part ν̄1(z)x̂ and a part with no mean,
ν̂ (ν̂ = 0), the last equation splits into two, namely

δD

δν̂
= 2(a− 1)∇2ν̂ − aφ′

 ν̂3

0
ν̂1

+ ∇p̂ = 0, (C 10)

δD

δν̄1

= 2(a− 1)ν̄ ′′1 + (a− 2)φ′′ + µ = 0. (C 11)

The Doering–Constantin problem is the variational problem left in φ and a if the
variational equations

δD

δλ
=
δD

δµ
=
δD

δν̄1

= 0,
δD

δν̂
= 0 (C 12)

are solved. In contrast, the Busse problem is the variational problem left in ν̂ if the
variational equations

δD

δφ
=
δD

δa
=
δD

δλ
=
δD

δµ
=
δD

δν̄1

= 0 (C 13)

are solved.

C.1. Doering–Constantin problem

Solving (C 11) and (C 8) using (C 7) gives

ν̄1 = − a− 2

2(a− 1)
[φ− Re(1− 4z2)]. (C 14)

Then exploiting the fact that 〈ν̄1 δD/δν̄1〉 = 0 to rewrite D gives

D =
a2

4(a− 1)
〈(φ′ + 8Re z〉+Dlam − Ĝ(a, φ, ν̂), (C 15)

where Dlam = 〈(8Re z)2〉 and

Ĝ(a, φ, ν̂) := (a− 1)〈|∇ν̂|2〉+ a〈ν̂1ν̂3φ
′〉. (C 16)
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As Ĝ is homogeneous in ν̂ , if inf ν̂ Ĝ exists (which is a condition on φ) it is 0 so that
the Doering–Constantin upper bound on the long-time-averaged dissipation rate is

inf
a>1,φ

a2

4(a− 1)
〈(φ′ + 8Re z)2〉+Dlam (C 17)

for φ which satisfies φ(± 1
2
) = 0, 〈φ〉 = 2

3
Re, and the so-called spectral constraint that

Ĝ > 0 ∀ ν̂ with ∇ · ν̂ = 0, ν̂(x, y,± 1
2
) = 0. (C 18)

Finding the ν̂ which attains inf ν̂ Ĝ = 0 corresponds to solving δD/δν̂ = 0.

C.2. Busse problem

Solving (C 11), (C 8), (C 7) and (C 5) leads to (C 14) and

φ′ + 8Re z =
2(a− 1)

a
(ν̂1ν̂3 − h〈hν̂1ν̂3〉), (C 19)

where h =
√

12z, and if the mean profile is to be symmetric about the mid-plane,
〈ν̂1ν̂3〉 = 0 has been assumed (Busse 1970). Then using (C 6) and the fact that
〈ν̂ · δD/δν̂〉 = 0 leads to the relationship

Re

a− 1
=
〈(ν̂1ν̂3 − h〈hν̂1ν̂3〉)2〉

8〈zν̂1ν̂3〉 . (C 20)

This allows the final variational equation to be solved, (C 10), to be rewritten as[
ν̂1ν̂3 − h〈hν̂1ν̂3〉 − 1

2

{√
Dlam +

〈(ν̂1ν̂3 − h〈hν̂1ν̂3〉)2〉
〈hν̂1ν̂3〉

}
h

] ν̂3

0
ν̂1

+ ∇p− ∇2ν̂ = 0,

(C 21)

which is the Euler–Lagrange equation resulting from Busse’s original problem of
minimizing √

Dlam =
4√
3
Re =

〈|∇ν̂|2〉
〈hν̂1ν̂3〉 + µ̂

〈(ν̂1ν̂3 − h〈hν̂1ν̂3〉)2〉
〈hν̂1ν̂3〉2 (C 22)

at fixed µ̂ := (D−Dlam)/
√
Dlam.

Appendix D
The purpose of this appendix is to show that the Euler–Lagrange problem treated

in § 3 (see (3.2)) can be derived directly from the Lagrangian (see (4.3)) used to apply
the background method. This means that both variational formulations are striving
to estimate the same (highest) stationary point or upper bound. The fact that the
Euler–Lagrange problem of § 3 is a maximization problem whereas the Doering–
Constantin problem is one of minimization also implies that these formulations
represent complementary principles. In this case, a trial function underestimate of the
upper bound secured from below using Busse’s multiple-boundary-layer technique
and a trial background field overestimate of the upper bound allows the correct value
to be bracketed.
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We illustrate this in the context of PCF by first recalling the Lagrangian of (4.3),

L := f(D − a〈ν · (NS)〉, Dm, Dv) = f

(
D − a〈u · (NS)〉+a

∫ 1/2

−1/2

φ(NS)1 dz, Dm, Dv

)
,

= f(〈φ′2〉 − 〈(a− 1)|∇ν̂|2 + (a− 1)ν̄ ′21 + aφ′ν̂1ν̂3 − (a− 2)φ′′ν̄1〉, 〈(φ′ + ν̄ ′1)
2〉, 〈|∇ν̂|2〉).

(D 1)

The strategy is to show that if the variational equations

δL
δφ

∣∣∣∣
ν̄1 ,ν̂ ,a

=
δL
δν̄1

∣∣∣∣
φ,ν̂ ,a

=
δL
δa

∣∣∣∣
φ,ν̄1 ,ν̂

= 0 (D 2)

are solved then the remaining problem in ν̂ , δL/δν̂ = 0, is the Euler–Lagrange
equation (3.2). That these three variational equations are implicitly satisfied in that
formulation is due to the fact that that the total power and mean momentum balances
are built into the Euler–Lagrange problem (3.2) from the beginning,

〈u · (NS)〉 = 0⇒ δL
δa

∣∣∣∣
u,φ

= 0, (NS)1 = 0⇒ δL
δφ

∣∣∣∣
u,a

=
δL
δφ

∣∣∣∣
ν̄1 ,ν̂ ,a

− δL
δν̄1

∣∣∣∣
φ,ν̂ ,a

= 0,

(D 3)

and the degeneracy in the velocity representation is implicitly removed by applying

δL
δν̄1

∣∣∣∣
φ,ν̂ ,a

= 0. (D 4)

The first of the variational equations in (D 2) leads to the relation

[(a− 2)fD − 2fDm]ν̄ ′′1 + afDν̂1ν̂3
′
= 2(fD + fDm)φ′′. (D 5)

Integrating twice and applying the boundary conditions ν̄1(x, y,± 1
2
) = 0 means that

[(a− 2)fD − 2fDm]ν̄ ′1 + afD[ν̂1ν̂3 − 〈ν̂1ν̂3〉] = 2(fD + fDm)(φ′ + Re). (D 6)

Similarly, δL/δν̄1 = 0 leads to

[2(a− 1)fD − 2fDm]ν̄ ′1 = [2fDm − (a− 2)fD](φ′ + Re), (D 7)

which allows ν̄1 to be eliminated, leaving the relation

(φ′ + Re) =
2(a− 1)fD − 2fDm

afD
[ν̂1ν̂3 − 〈ν̂1ν̂3〉]. (D 8)

The variational equation δL/δν̂ = 0 is

afDφ
′
 ν̂3

0
ν̂1

+ ∇p− 2[(a− 1)fD − fDv ]∇2ν̂ = 0, (D 9)

which upon use of (D 8) becomes[
(a− 1)fD − fDm
(a− 1)fD − fDv (ν̂1ν̂3 − 〈ν̂1ν̂3〉)− Re

2

(a− 1)fD + fD

(a− 1)fD − fDv
] ν̂3

0
ν̂1

+∇p−∇2ν̂ = 0. (D 10)

This has exactly the form of (3.2) providing Λ = −(a − 1)fD (where (u, v, w) :=
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(ν̂1, ν̂2, ν̂3)). This last condition is enforced by imposing the power balance through
δL/δa = 0 and taking 〈ν̂ · δL/δν̂〉 = 0.
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shear-flow dissipation rate. Phys. Rev. E 51, 360–365.

Gupta, V. P. & Joseph, D. D. 1973 Bounds for heat transport in a porous layer. J. Fluid Mech. 57,
491–514.

Hopf, E. 1941 Ein allgemeiner endlichkeitssatz der hydrodynamik. Mathematische Annalen 117,
764–775.

Howard, L. N. 1963 Heat transport by turbulent convection. J. Fluid Mech. 17, 405–432.

Howard, L. N. 1972 Bounds on flow quantities. Annu. Rev. Fluid Mech. 4, 473–494.

Howard, L. N. 1990 Limits on the transport of heat and momentum by turbulent convection with
large scale flow. Stud. Appl. Maths 83, 273–285.

Ierley, G. R. & Malkus, W. V. R. 1988 Stability bounds on turbulent Poiseuille flow. J. Fluid Mech.
187, 435–449.



274 R. R. Kerswell

Ierley, G. R. & Worthing, R. A. 2001a Bound to improve: a variational approach to convective
heat transport. J. Fluid Mech. 441, 223–253.

Ierley, G. R. & Worthing, R. A. 2001b Assessment of a variational theory of turbulence. preprint.

Kerswell, R. R. 1996 Upper bounds on the energy dissipation in turbulent precession. J. Fluid
Mech. 321, 335–370.

Kerswell, R. R. 1997 Variational bounds on shear-driven turbulence and turbulent Boussinesq
convection. Physica D 100, 355–376.

Kerswell, R. R. 1998 Unification of variational principles for turbulent shear flows: the Background
method of Doering-Constantin and Howard-Busse’s mean-fluctuation formulation. Physica D
121, 175–192.

Kerswell, R. R. 2000 Lowering dissipation bounds for turbulent shear flows using a smoothness
constraint. Phys. Lett. A 272, 230–235.

Kerswell, R. R. 2001 New results in the variational approach to turbulent Boussinesq convection.
Phys. Fluids 13, 192–209.

Kerswell, R. R. & Soward, A. M. 1996 Upper bounds for turbulent Couette flow incorporating
the poloidal power constraint. J. Fluid Mech. 328, 161–176.

Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. 225,
196–212.

Malkus, W. V. R. 1956 Outline of a theory for turbulent shear flow. J. Fluid Mech. 1, 521–539.

Malkus, W. V. R. 1996 Statistical stability criteria for turbulent flow. Phys. Fluids 8, 1582–1587.

Malkus, W. V. R. & Smith, L. M. 1989 Upper bounds on functions of the dissipation rate in
turbulent shear flow. J. Fluid Mech. 208, 479–507.

Nickerson, E. C. 1969 Upper bounds on the torque in cylindrical Couette flow. J. Fluid Mech. 38,
807–815.

Nicodemus, R., Grossmann, S. & Holthaus, M. 1997a Improved variational principle for bounds
on energy dissipation in turbulent shear flow. Physica D 101, 178–190.

Nicodemus, R., Grossmann, S. & Holthaus, M. 1997b Variational bound on energy dissipation in
plane Couette flow. Phys. Rev. E 56, 6774–6786.

Nicodemus, R., Grossmann, S. & Holthaus, M. 1998a The background flow method. Part 1.
Constructive approach to bounds on energy dissipation. J. Fluid Mech. 363, 281–300.

Nicodemus, R., Grossmann, S. & Holthaus, M. 1998b The background flow method. Part 2.
Asymptotic theory of dissipation bounds. J. Fluid Mech. 363, 301–323.

Nicodemus, R., Grossmann, S. & Holthaus, M. 1999 Towards lowering dissipation bounds for
turbulent flows. Eur. Phys. J. B 10, 385–396.

Plasting, S. C. & Kerswell, R. R. 2002 Improved upper bound on the energy dissipation in plane
Couette flow: The full solution to Busse’s problem and the Doering-Constantin problem with
1-D background field. J. Fluid Mech. (submitted).

Reynolds, W. C. & Tiederman, W. G. 1967 Stability of turbulent channel flow, with applications
to Malkus’s theory. J. Fluid Mech. 27, 253–272.

Smith, L. M. 1991 Turbulent Couette flow profiles that maximise the efficiency function. J. Fluid
Mech. 227, 509–525.

Vitanov, N. K. 1998 Upper bound on the heat transport in a horizontal fluid layer of infinite
Prandtl number. Phys. Lett. A 248, 338–346.

Vitanov, N. K. 2000a Upper bounds on the heat transport in a porous layer. Physica D 136,
322–339.

Vitanov, N. K. 2000b Upper bounds on the heat transport in a fluid layer of infinite Prandtl
number, rigid lower boundary and stress-free upper boundary. Phys. Rev. E 61, 956–959.

Vitanov, N. K. 2000c Convective heat transport in a fluid layer of infinite Prandtl number: upper
bounds for the case of rigid lower boundary and stress-free upper boundary. Eur. Phys. J. B
15, 349–355.

Vitanov, N. K. 2000d Upper bounds on convective heat transport in a rotating fluid layer of infinite
Prandtl number: Case of intermediate Taylor numbers. Phys. Rev. E 62, 3581–3591.

Vitanov, N. K. & Busse, F. H. 1997 Bounds on the heat transport in a horizontal fluid layer with
stress-free boundaries. Z. Angew. Math. Phys. 48, 310–324.

Vitanov, N. K. & Busse, F. H. 2000 Bounds on the convective heat transport in a rotating layer.
Phys. Rev. E 63, 016303(1)–016303(8).



Upper bounds on dissipation functionals 275

Wang, X. M. 1997 Time averaged energy dissipation rate of boundary driven flows in Rn. Physica
D 99, 555–563.

Wang, X. M. 2000 Effect of tangential derivative in the boundary layer on time averaged energy
dissipation rate. Physica D 144, 142–153.

Worthing, R. A. 1990 Assessment of an upper bound theory for turbulent mean flows. MSc Thesis,
Michigan Technological University.


